SEVEN SESQUITERPENE LACTONES FROM INULA BRITANNICA VAR. CHINENSIS

KAZUO ITO and TOSHIYUKI IIDA

Faculty of Pharmacy, Meijo University, Yagoto, Tenpaku, Nagoya 468, Japan

(Received 20 May 1980)

Key Word Index—Inula britannica var. chinensis; Inuleae; Compositae; eudesmanolides; guaianolides; pseudoguaianolides; xanthanolides; inuchinenolides A, B and C.

Abstract—Four known sesquiterpene lactones, tomentosin, ivalin, 4-epi-isoinuviscolide and gaillardin, together with three new lactones, inuchinenolides A, B and C, were identified in the whole plant of *Inula britannica* var. chinensis.

INTRODUCTION

Sesquiterpene lactones of different skeletal types have been isolated from various *Inula* species [1]. Because of our interest in the natural distribution of such lactones, we have examined *Inula britannica* L. var. chinensis (Rupr.) Regel. (Japanese name Oguruma) [2], one of four *Inula species growing in Japan*. Along with known compounds (the xanthanolide, tomentosin (1) [3], the eudesmanolide, ivalin (3) [4], the guaianolides, 4-epi-isoinuviscolide (8) [3] and gaillardin (9) [5]), three new sesquiterpene lactones [inuchinenolides A (2), B (5a) and C (7)] were found. We report here isolation and structural elucidation of these new compounds.

RESULTS AND DISCUSSION

Inuchinenolide A (2) has the same absolute stereostructure as tomentosin (1) except for the presence of an acetoxyl group (UV(MeOH) 219.5 nm; CD curve $[\theta]_{295} + 422, [\theta]_{284}0, [\theta]_{257} - 4432; IR(CHCl_3) cm^{-1}: 1770 (\alpha,\beta-unsaturated \gamma-lactone), 1750 (ester), 1720 (C=O), 1665 (C=C); <math>m/e$ 306 (M⁺), 264, 246 (M⁺ - HOAc), 228; ¹H NMR, see Experimental; ¹³C NMR, Table 1).

The acetoxyl group is located at C-6, because in going from (1) to (2) a vinyl proton signal (H-5) changes from a doublet of doublets to a broad singlet and the H-7 signal changes from a multiplet to a quartet of doublets.

Table 1. ¹³C NMR data (ppm) for inuchinenolide A (2), B (5a) and (7)

Carbon•No.	2	5a	7
1	142.5 s	135.7 s	49.7 d
2	30.0 i	72.0 d	75,6 d
3	42.2 t	46.8 t	43.9 t
4	207.0 s	77.1 s	75.6 d
5	125.5 d	52.1 d	51.9 s
6	70.0 d	25.1 d	74.7 d
7	42.2 d	41.9 d	53.6 d
8	76.7 d	78.6 d	74.2 d
9	36.9 t	36.7 t	35.0 t
10	35.0 d	131.2 s	30.1 d
11	135.6 s	138.2 s	139.1 s
12	169.5 s	169.6 s	169.3 s
13	124.7 r	121.7 <i>t</i>	121.0 t
14	20.6 q	21.6 q	17.1q
15	30.0 q	22.6q	20.6 q
ÇH,COO	21.0 q	20.9 q	$21.1/2 \times q$
ĊĦ³ĈOO	168.9 s	170.3 s	170.0 s
			172.3 s

Run in CDCl₃ on a JEOL FX-100 spectrometer with TMS as int. standard. s, singlet: d. doublet: t, triplet; q, quartet. Assignment establishment by frequency off-resonance decoupling.

Irradiation at the frequency of H-7 (δ 3.42) does not change the doublet (J = 3 Hz) of H-6, so H-6 exclusively couples with H-5 (dihedral angle from Dreiding models \sim 80 for $J_{6x,7z}$). Hence, the acetoxyl group at C-6 is β -oriented. The structure of inuchinenolide A should be represented by (2) except for the stereochemistry of C-10, which remains uncertain.

The second compound, inuchinenolide B (5a) shows the following spectral data: colourless oil: $[\alpha]_D = 57.2$: IR (CHCl₃) cm⁻¹: 3600, 3500, 1765, 1735; CD curve $[\theta]_{250} = 3477$; m/e = 306 (M⁺, $C_{17}H_{22}O_5$), 264, 246 (M⁺ – HOAc), 228 (M⁺ – HOAc- H_2O), and has a ¹H NMR spectrum (see Experimental) superimposable on that of pseudoivalin (4) from Ira microcephala [6]. except for the signal of an acetoxyl group. A broad triplet at 5.42 (1H, J = 8 Hz) was assigned to H-2, since irradiation of C-10Me affected the proton attached to an acetoxyl group. Hydrolysis of 5a with 2% aqueous KOH in dioxane gave the corresponding diol (5b) [IR (CHCl₃) cm $^{-1}$: 3620, 3450, 1765; m/e 264 (M $^{+}$)]. Oxidation of **5b** with PCC [7] in CH₂Cl₂ at room temperature afforded a cyclopentenone derivative (5c) [IR (CHCl₃) cm⁻¹: 1765, 1715, 1630; UV (MeOH) 210, 252 nm; m/e 262 (M⁺), From the above physical data, 5c is a methylenecyclopentenone. Furthermore, on dehydration with mesyl chloride and pyridine it gave the crossconjugated dienone (6) [IR (CHCl₃) cm⁻¹: 1765, 1720, 1685, 1640, 1620; UV (MeOH) 206, 255 nm; m/e 244 (M⁺); ¹H NMR (CDCl₃): δ 6.09 (1H, br. s, H-3)]. These observations confirmed the presence of two hydroxyl groups at C-2 and C-4 in 5b. The configuration of the hydroxyl group at C-2 was established by use of Horeau's method [8] and was shown to be α . On the other hand, the diol (5b) formed a cyclic ethylidene derivative with acetaldehyde dimethylacetal

and H₂SO₄, hence two hydroxyl groups are vis. These experiments and the physical data lead to the complete stereochemistry 5a for inuchinenolide B.

The third compound, inuchinenolide C (7) shows the following spectral data: colourless oil: $[x]_D = 25.9$; CD curve $[\theta]_{271}$ + 538, $[\theta]_{248}$ 0; IR (CHCl₃) cm⁻¹; 3450, 1770, 1730; m/e 366 (M⁺, C₁₉H₂₆O₇), 306 (M⁺ - HOAc), 246 (M⁺ - 2 × HOAc), 228 (M⁺ - 2 × HOAc-H₂O): ¹H NMR, see Experimental: ¹³C NMR, Table 1. Hence, inuchinenolide C is a C₈-pseudoguaianolide with a trans-fused lactone which contains two acetoxyl and one hydroxyl group. On acetylation with acetic anhydride and pyridine, it gave a triacetate [IR $(CHCl_3)$ cm⁻¹: 1765, 1730; m/e 408 $(M^+)_1^-$. A doublet of doublets at 3.52 (1H, J = 4, 8 Hz) in 7 collapsed into a doublet (J = 8 Hz) upon D₂O addition. Furthermore, on irradiation at H-7 (δ 2.71) the signals of 13-H and 13'-H collapsed into two singlets and a doublet (\delta 3.52) was converted into a broad singlet. These experiments showed that the hydroxyl group was located at C-6x $(J_{66.7x} = 8 \,\mathrm{Hz})$. As irradiation at the frequency of either of the protons under the two acetoxyl groups did not affect the other, the acetoxyl groups are present at C-2 and C-4, respectively. On the other hand, no NOE was observed between C-5 Me and H-10. This supports the β configuration of C-10 Me group because the C-5 Me group is probably β on the basis of biogenetic considerations. Therefore, the structure of inuchinenolide C is assumed to be 7 except for the stereochemistry of the two acetoxyl groups.

EXPERIMENTAL

Mps are uncorr. 3 H NMR (100 MHz) and $^{-3}$ C NMR (25 MHz): CDCl₃. δ units relative to TMS, MS (70 eV) direct insertion. IR and $[\alpha]_{D}$: CHCl₃. UV and CD: MeOH.

Extraction and separation. The MeOH extract of fresh whole plant $(15 \,\mathrm{kg})$ of Inula britannica var. chinensis collected at Komaki, Aichi prefecture, Japan, was divided into the n-hexane and the EtOAc-soluble fractions $(100 \,\mathrm{g})$. The EtOAc-soluble fraction $(C_{\mathrm{b}}H_{\mathrm{e}}\text{-EtOAc}, 3:1)$ gave tomentosin $(1, 55 \,\mathrm{mg})$ and inuchinenolide A $(2, 60 \,\mathrm{mg})$. The second fraction (1:1) gave ivalin $(3, 1 \,\mathrm{g})$, inuchinenolide B $(5a, 250 \,\mathrm{mg})$ and inuchinenolide C $(7, 17 \,\mathrm{mg})$. The third fraction (1:3) gave 4-epi-isoinuviscolide $(8, 35 \,\mathrm{mg})$ and gaillardin $(9, 1.5 \,\mathrm{g})$.

Timentosin (1). Colourless oil. $\{z_{1D}^{20} + 34.9 \ (c.0.55, CHCl_3)$. IR $v_{\text{max}}^{\text{(HCL)}}$ cm⁻¹: 1765, 1720, 1665, UV $\lambda_{\text{max}}^{\text{(HCL)}}$ nm: 219.5, CD curve $[\theta]_{296}^{1} + 228, [\theta]_{289}^{1}$ 0, $[\theta]_{258} + 4692$. MS m_{e} e: 248 (M⁻¹), 230, 215, 205, 190. ¹H NMR: θ 1.14 (3H, d, d, d = 7 Hz, C-10Me), 2.14 (3H, s, C-4Me), 3.28 (1H, m, C-7H), 4.62 (1H, m, C-8H), 5.40 (1H, dd, d, d = 6, 8 Hz, C-5H).

Inuchinenolide A (2). Colourless oil. $[\alpha]_D^{2.0} = 54.6^\circ$ (c.0.5, CHCl₃). IR $v_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 1770, 1750, 1720, 1665. UV $\lambda_{\text{max}}^{\text{MsOH}}$ nm: 219.5 (α 5012). CD curve $[\theta]_{205} = 422$, $[\theta]_{284}0$, $[\theta]_{255} = 4432$. MS m_te : 306 (M ', C₁₇H₂₂O₅), 264, 246, 228. ¹H NMR: δ1.17 (3H, d, J = 7 Hz, C-10Me), 2.12, 2.16 (each 3H, s, C-4Me or OCOMe), 3.42 (IH, m(qd), C-7H), 4.64 (IH, m, C-8H), 5.08 (IH, d, J = 3 Hz, C-6zH), 5.60 (IH, br, s, C-5H), 5.71 (1H, d, J = 3 Hz, C-13H), 6.28 (IH, d, J = 3 Hz, C-13'H).

Iralin (3). Mp 131 \sim 134°, IR $v_{max}^{\rm CHCL}$ cm $^{-1}$: 3625, 3500, 1765, 1670, 1650, Calc. for $C_{18}H_{20}O_3$: C, 72.55; H, 8.21, Found: C, 72.32; H, 8.18° $_{\rm ir}$

Inuchinenolide B (5a). Colourless oil. $[\alpha]_{10}^{20} = 57.2^{\circ}$ (c. 1.3, CHCl₃). IR $v_{\text{mas}}^{\text{MeOH}}$ cm⁻¹: 3600, 3500, 1760, 1735. UV $\lambda_{\text{mas}}^{\text{MeOH}}$ nm: 209 (e.9876). CD curve $[\theta]_{250} = 3477$. MS m_ee : 306 (M., $C_{12}H_{23}O_3$), 264, 246, 228. HNMR: δ 1.05 (3H, s, C-4Me), 1.68

(3H, s, C-10Me), 2.06 (3H, s, OCOMe), 3.30 (1H, m, C-7H), 4.84 (1H, m, C-8H), 5.42 (1H, br. t, J = 8 Hz, C-2H), 5.61 (1H, d, J = 3 Hz, C-13H), 6.26 (1H, d, J = 3 Hz, C-13'H).

Hydrolysis of **5a**. To a soln of 25 mg **5a** in 1.5 ml dioxane was added 4 ml 2% KOH, and the soln was allowed to stand overnight. This soln was acidified and extracted with EtOAc. The extract was evapd and the residue passed through a column of Si gel (1 g, CHCl₃) to give an oil (**5b**, 5 mg). [α]_D²⁰ = 121.0° (c 0.2, CHCl₃). IR $\nu_{\text{max}}^{\text{(Hcl₃)}}$ cm⁻¹: 3620, 3450, 1765. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 210 (ε 9029). MS $m_{\text{c}}^{\text{(Hcl₃)}}$ cm⁻¹: 3620, 3450, 1765. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 210 (ε 9029). MS $m_{\text{c}}^{\text{(Hcl₃)}}$ com⁻¹: 3620, 3450, 1765. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 210, 231, 228 (M⁺ – 2 × H₂O), 204. ¹H NMR: δ1.04 (3H, s, C-4Me), 1.85 (3H, d, J = 2 Hz, C-10Me), 3.28 (1H, m, C-7H), 3.70 (1H, m, OH), 4.52 (1H, br. t, J = 8 Hz, C-2H), 4.82 (1H, m, C-8H), 5.62 (1H, d, J = 3 Hz, C-13'H).

Oxidation of **5b**. A soln of 12 mg **5b** in 5 ml CH₂Cl₂ was cooled with ice and treated with 20 mg pyridine chlorochromate. After 2 hr the solution was diluted with 5 ml H₂O and extracted with CHCl₃. The extract was evapd to give an oil (**5c**, 8 mg). IR $v_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 3620, 1765, 1715, 1630. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 210 (ϵ 1284), 252 (ϵ 933). MS m/ϵ : 262 (M⁺, C₁₅H₁₈O₄), 247, 244, 204. ¹H NMR: δ 1.16 (3H, ϵ , C-4Me), 2.24 (3H, ϵ , ϵ , J = 2 Hz, C-10Me), 3.30 (1H, ϵ , C-7H), 4.80 (1H, ϵ , C-8H), 5.65 (1H, ϵ , ϵ , J = 3 Hz, C-13H), 6.32 (1H, ϵ , ϵ , J = 3 Hz, C-13H).

Dehydration of **5c**. The oily oxidation product (**5c**, 2 mg was dissolved in 1 ml pyridine, and 1 drop mesyl chloride was added. The resulting solution was left overnight at 0°. The reactant was treated in the usual manner. Colourless oil (**6**, 1 mg). IR $v_{\rm max}^{\rm CHO1}$ cm⁻¹: 1765, 1720, 1685, 1640, 1620. UV $\lambda_{\rm max}^{\rm MCOH}$ nm: 206, 255. MS m/e: 244 (M⁺, C_{1s}H_{1b}O₄). ¹H NMR: δ 2.13 (3H, s, C-4Me), 2.29 (3H, s, C-10Me), 4.88 (1H, m, C-8H), 5.58 (1H, d, J = 3 Hz, C-13H), 6.09 (1H, br. s, C-3H), 6.26 (1H, d, J = 3 Hz, C-13'H).

Configuration of C-2 in 5b. A soln of 4 mg 5b and 9 mg (\pm)-2-phenylbutanoic anhydride in 0.5 ml pyridine was kept at room temp, overnight. After working up the reaction mixture by the usual procedure 8 mg 2-phenylbutanoic acid was recovered. [α] $_D^{20} = 5.6^{\circ}$ (c 0.53, C_6H_6).

Ethylidene product. To a soln of **5b** (5 mg) in 3 ml acetaldehyde dimethylacetal was added with cooling 1 drop of conc $\rm H_2SO_4$. After standing overnight at room temp., the mixture was poured into ice and ether. The organic layer was washed with water and dried. Oil (2 mg). IR $v_{\rm max}^{\rm CHCl.s}$ cm⁻¹: 1765, 1155. MS m/e: 290 (M⁺). ¹H NMR: δ 1.06 (3H, s, C-4Me), 1.28 (3H, d, J = 6 Hz, C $\underline{\rm H}_3$ -CH), 1.90 (3H, s, C-10Me), 5.20 (1H, q, J = 6 Hz, Me-C $\underline{\rm H}$).

Inuchinenolide C (7). Colourless oil. $[\alpha]_D^{20} = 25.9^\circ$ (c 1.13, CHCl₃). IR $v_{max}^{CHCl_3}$ cm⁻¹: 3450, 1770, 1730. UV λ_{max}^{MeOH} nm: 209

(c 6889). CD curve $[\theta]_{271}$ + 538, $[\theta]_{248}$ 0. MS m/e: 366 (M⁺, C₁₉H₂₆O₇), 306, 246, 228. ¹H NMR: δ 0.92 (3H, s, C-5Me), 0.98 (3H, d, J = 6 Hz, C-10Me), 1.90 (1H, dd, J = 2, 6 Hz, C-10H), 2.04, 2.14 (each 3H, s, C-2,4 OCOMe), 2.17 (1H, m, 7-H), 3.52 (1H, dd, J = 4, 8 Hz, C-6H), 4.42 (1H, m, C-8H), 4.80 (1H, d, J = 4 Hz C-6 OH), 4.90 (1H, br, t, J = 8 Hz, C-2H), 5.58 (1H, dd, J = 9, 11 Hz, C-4H), 5.95 (1H, d, J = 3 Hz, C-13H), 6.17 (1H, d, J = 3 Hz, C-13'H).

Acetylation of 7. 7 (5 mg) was treated with Ac₂O (1 mt) and pyridine (1 ml) at room temp. for 2 days to give triacctate (4 mg). 4-Epi-isoinuviscolide (8). Mp 143 ~ 146°. $[\alpha]_{20}^{20}$ – 59.2° (c 0.5, CHCl₃). IR $v_{\text{max}}^{\text{CHCl}_3}$ cm $^{-1}$: 3620, 1770, 1670, 1660. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 205.5. CD curve $[\theta]_{237}$ + 818, $[\theta]_{226}$ 0. MS m/e: 248 (M⁺), 230, 215. 1 H NMR: δ 1.24 (3H, s, C-4Me), 1.84 (3H, s, C-10Me), 4.70 (1H, br, d, J = 8 Hz, C-8H). 5.46 (1H, d, J = 3 Hz, C-13H). 5.83 (1H, br, s, C-9H), 6.16 (1H, d, J = 3 Hz, C-13'H).

Gaillardin (9). Mp 199 ~ 201°. [α]_D²⁰ – 9.7° (c 1.0, CHCl₃). IR $v_{\text{max}}^{\text{CHCl}_3}$ cm $^{-1}$: 3600, 1770, 1740, 1660. UV $\lambda_{\text{max}}^{\text{MeGl}_3}$ mn: 210 (ε 11 200). CD curve $[\theta]_{250}$ + 977, $[\theta]_{235}$ 0. MS m/e: 306 (M+), 288, 246, 228, ¹H NMR: δ 1.24 (3H, s, C-4Me), 1.80 (3H. s, C-10Me), 2.06 (3H, s, OCOMe), 4.44 (1H, br, d, J = 8 Hz, C-8H), 5.24 (1H, br, s, C-2H), 5.46 (1H, d, J = 3 Hz, C-13H), 5.84 (1H, br, s, C-9H), 6.12 (1H, d, J = 3 Hz, C-13H).

Acknowledgements—We thank Dr. W. Herz, the Florida State University, for providing ivalin and pseudoivalin, and Dr. M. Haruna of our laboratory for ¹³C NMR.

REFERENCES

- Fischer, N. H., Oliver, E. J. and Fischer, H. D. (1979) Prog. Chem. Organ. Nat. Prod. 38, 47.
- Kitamura, S. and Maruta, G. (1967) Coloured Illustration of Herbaceous Plants of Japan, Vol. I, p. 70. Hoikusha.
- Bohlmann, F., Mahanta, P. K., Jakupovic, J., Rastogi, R. C. and Natu, A. A. (1978) Phytochemistry 17, 1165.
- 4. Herz, W. and Högenauer, G. (1962) J. Org. Chem. 27, 905.
- Kupchan, S. M., Cassady, J. M., Kelsey, J. M., Schnoes, H. K., Smith, D. H. and Burlingame, A. L. (1966) *J. Am. Chem. Soc.* 88, 5292.
- Herz, W., Vivar, A. R. de and Lakshmikantham. M. V. (1965)
 J. Org. Chem. 30, 118.
- 7. Corey, E. J. and Suggs, J. W. (1975) Tetrahedron Letters 2647.
- Kagan, H. B. (1977) Stereochemistry, Fundamentals and Methods, Vol. 3, p. 51. Georg Thieme, Stuttgart.